home *** CD-ROM | disk | FTP | other *** search
Ruby Source | 2008-02-15 | 12.9 KB | 664 lines |
- #
- # complex.rb -
- # $Release Version: 0.5 $
- # $Revision: 1.3 $
- # $Date: 1998/07/08 10:05:28 $
- # by Keiju ISHITSUKA(SHL Japan Inc.)
- #
- # ----
- #
- # complex.rb implements the Complex class for complex numbers. Additionally,
- # some methods in other Numeric classes are redefined or added to allow greater
- # interoperability with Complex numbers.
- #
- # Complex numbers can be created in the following manner:
- # - <tt>Complex(a, b)</tt>
- # - <tt>Complex.polar(radius, theta)</tt>
- #
- # Additionally, note the following:
- # - <tt>Complex::I</tt> (the mathematical constant <i>i</i>)
- # - <tt>Numeric#im</tt> (e.g. <tt>5.im -> 0+5i</tt>)
- #
- # The following +Math+ module methods are redefined to handle Complex arguments.
- # They will work as normal with non-Complex arguments.
- # sqrt exp cos sin tan log log10
- # cosh sinh tanh acos asin atan atan2 acosh asinh atanh
- #
-
-
- #
- # Numeric is a built-in class on which Fixnum, Bignum, etc., are based. Here
- # some methods are added so that all number types can be treated to some extent
- # as Complex numbers.
- #
- class Numeric
- #
- # Returns a Complex number <tt>(0,<i>self</i>)</tt>.
- #
- def im
- Complex(0, self)
- end
-
- #
- # The real part of a complex number, i.e. <i>self</i>.
- #
- def real
- self
- end
-
- #
- # The imaginary part of a complex number, i.e. 0.
- #
- def image
- 0
- end
- alias imag image
-
- #
- # See Complex#arg.
- #
- def arg
- if self >= 0
- return 0
- else
- return Math::PI
- end
- end
- alias angle arg
-
- #
- # See Complex#polar.
- #
- def polar
- return abs, arg
- end
-
- #
- # See Complex#conjugate (short answer: returns <i>self</i>).
- #
- def conjugate
- self
- end
- alias conj conjugate
- end
-
-
- #
- # Creates a Complex number. +a+ and +b+ should be Numeric. The result will be
- # <tt>a+bi</tt>.
- #
- def Complex(a, b = 0)
- if b == 0 and (a.kind_of?(Complex) or defined? Complex::Unify)
- a
- else
- Complex.new( a.real-b.imag, a.imag+b.real )
- end
- end
-
- #
- # The complex number class. See complex.rb for an overview.
- #
- class Complex < Numeric
- @RCS_ID='-$Id: complex.rb,v 1.3 1998/07/08 10:05:28 keiju Exp keiju $-'
-
- undef step
- undef div, divmod
- undef floor, truncate, ceil, round
-
- def Complex.generic?(other) # :nodoc:
- other.kind_of?(Integer) or
- other.kind_of?(Float) or
- (defined?(Rational) and other.kind_of?(Rational))
- end
-
- #
- # Creates a +Complex+ number in terms of +r+ (radius) and +theta+ (angle).
- #
- def Complex.polar(r, theta)
- Complex(r*Math.cos(theta), r*Math.sin(theta))
- end
-
- #
- # Creates a +Complex+ number <tt>a</tt>+<tt>b</tt><i>i</i>.
- #
- def Complex.new!(a, b=0)
- new(a,b)
- end
-
- def initialize(a, b)
- raise TypeError, "non numeric 1st arg `#{a.inspect}'" if !a.kind_of? Numeric
- raise TypeError, "`#{a.inspect}' for 1st arg" if a.kind_of? Complex
- raise TypeError, "non numeric 2nd arg `#{b.inspect}'" if !b.kind_of? Numeric
- raise TypeError, "`#{b.inspect}' for 2nd arg" if b.kind_of? Complex
- @real = a
- @image = b
- end
-
- #
- # Addition with real or complex number.
- #
- def + (other)
- if other.kind_of?(Complex)
- re = @real + other.real
- im = @image + other.image
- Complex(re, im)
- elsif Complex.generic?(other)
- Complex(@real + other, @image)
- else
- x , y = other.coerce(self)
- x + y
- end
- end
-
- #
- # Subtraction with real or complex number.
- #
- def - (other)
- if other.kind_of?(Complex)
- re = @real - other.real
- im = @image - other.image
- Complex(re, im)
- elsif Complex.generic?(other)
- Complex(@real - other, @image)
- else
- x , y = other.coerce(self)
- x - y
- end
- end
-
- #
- # Multiplication with real or complex number.
- #
- def * (other)
- if other.kind_of?(Complex)
- re = @real*other.real - @image*other.image
- im = @real*other.image + @image*other.real
- Complex(re, im)
- elsif Complex.generic?(other)
- Complex(@real * other, @image * other)
- else
- x , y = other.coerce(self)
- x * y
- end
- end
-
- #
- # Division by real or complex number.
- #
- def / (other)
- if other.kind_of?(Complex)
- self*other.conjugate/other.abs2
- elsif Complex.generic?(other)
- Complex(@real/other, @image/other)
- else
- x, y = other.coerce(self)
- x/y
- end
- end
-
- def quo(other)
- Complex(@real.quo(1), @image.quo(1)) / other
- end
-
- #
- # Raise this complex number to the given (real or complex) power.
- #
- def ** (other)
- if other == 0
- return Complex(1)
- end
- if other.kind_of?(Complex)
- r, theta = polar
- ore = other.real
- oim = other.image
- nr = Math.exp!(ore*Math.log!(r) - oim * theta)
- ntheta = theta*ore + oim*Math.log!(r)
- Complex.polar(nr, ntheta)
- elsif other.kind_of?(Integer)
- if other > 0
- x = self
- z = x
- n = other - 1
- while n != 0
- while (div, mod = n.divmod(2)
- mod == 0)
- x = Complex(x.real*x.real - x.image*x.image, 2*x.real*x.image)
- n = div
- end
- z *= x
- n -= 1
- end
- z
- else
- if defined? Rational
- (Rational(1) / self) ** -other
- else
- self ** Float(other)
- end
- end
- elsif Complex.generic?(other)
- r, theta = polar
- Complex.polar(r**other, theta*other)
- else
- x, y = other.coerce(self)
- x**y
- end
- end
-
- #
- # Remainder after division by a real or complex number.
- #
- def % (other)
- if other.kind_of?(Complex)
- Complex(@real % other.real, @image % other.image)
- elsif Complex.generic?(other)
- Complex(@real % other, @image % other)
- else
- x , y = other.coerce(self)
- x % y
- end
- end
-
- #--
- # def divmod(other)
- # if other.kind_of?(Complex)
- # rdiv, rmod = @real.divmod(other.real)
- # idiv, imod = @image.divmod(other.image)
- # return Complex(rdiv, idiv), Complex(rmod, rmod)
- # elsif Complex.generic?(other)
- # Complex(@real.divmod(other), @image.divmod(other))
- # else
- # x , y = other.coerce(self)
- # x.divmod(y)
- # end
- # end
- #++
-
- #
- # Absolute value (aka modulus): distance from the zero point on the complex
- # plane.
- #
- def abs
- Math.hypot(@real, @image)
- end
-
- #
- # Square of the absolute value.
- #
- def abs2
- @real*@real + @image*@image
- end
-
- #
- # Argument (angle from (1,0) on the complex plane).
- #
- def arg
- Math.atan2!(@image, @real)
- end
- alias angle arg
-
- #
- # Returns the absolute value _and_ the argument.
- #
- def polar
- return abs, arg
- end
-
- #
- # Complex conjugate (<tt>z + z.conjugate = 2 * z.real</tt>).
- #
- def conjugate
- Complex(@real, -@image)
- end
- alias conj conjugate
-
- #
- # Compares the absolute values of the two numbers.
- #
- def <=> (other)
- self.abs <=> other.abs
- end
-
- #
- # Test for numerical equality (<tt>a == a + 0<i>i</i></tt>).
- #
- def == (other)
- if other.kind_of?(Complex)
- @real == other.real and @image == other.image
- elsif Complex.generic?(other)
- @real == other and @image == 0
- else
- other == self
- end
- end
-
- #
- # Attempts to coerce +other+ to a Complex number.
- #
- def coerce(other)
- if Complex.generic?(other)
- return Complex.new!(other), self
- else
- super
- end
- end
-
- #
- # FIXME
- #
- def denominator
- @real.denominator.lcm(@image.denominator)
- end
-
- #
- # FIXME
- #
- def numerator
- cd = denominator
- Complex(@real.numerator*(cd/@real.denominator),
- @image.numerator*(cd/@image.denominator))
- end
-
- #
- # Standard string representation of the complex number.
- #
- def to_s
- if @real != 0
- if defined?(Rational) and @image.kind_of?(Rational) and @image.denominator != 1
- if @image >= 0
- @real.to_s+"+("+@image.to_s+")i"
- else
- @real.to_s+"-("+(-@image).to_s+")i"
- end
- else
- if @image >= 0
- @real.to_s+"+"+@image.to_s+"i"
- else
- @real.to_s+"-"+(-@image).to_s+"i"
- end
- end
- else
- if defined?(Rational) and @image.kind_of?(Rational) and @image.denominator != 1
- "("+@image.to_s+")i"
- else
- @image.to_s+"i"
- end
- end
- end
-
- #
- # Returns a hash code for the complex number.
- #
- def hash
- @real.hash ^ @image.hash
- end
-
- #
- # Returns "<tt>Complex(<i>real</i>, <i>image</i>)</tt>".
- #
- def inspect
- sprintf("Complex(%s, %s)", @real.inspect, @image.inspect)
- end
-
-
- #
- # +I+ is the imaginary number. It exists at point (0,1) on the complex plane.
- #
- I = Complex(0,1)
-
- # The real part of a complex number.
- attr :real
-
- # The imaginary part of a complex number.
- attr :image
- alias imag image
-
- end
-
- class Integer
-
- unless defined?(1.numerator)
- def numerator() self end
- def denominator() 1 end
-
- def gcd(other)
- min = self.abs
- max = other.abs
- while min > 0
- tmp = min
- min = max % min
- max = tmp
- end
- max
- end
-
- def lcm(other)
- if self.zero? or other.zero?
- 0
- else
- (self.div(self.gcd(other)) * other).abs
- end
- end
-
- end
-
- end
-
- module Math
- alias sqrt! sqrt
- alias exp! exp
- alias log! log
- alias log10! log10
- alias cos! cos
- alias sin! sin
- alias tan! tan
- alias cosh! cosh
- alias sinh! sinh
- alias tanh! tanh
- alias acos! acos
- alias asin! asin
- alias atan! atan
- alias atan2! atan2
- alias acosh! acosh
- alias asinh! asinh
- alias atanh! atanh
-
- # Redefined to handle a Complex argument.
- def sqrt(z)
- if Complex.generic?(z)
- if z >= 0
- sqrt!(z)
- else
- Complex(0,sqrt!(-z))
- end
- else
- if z.image < 0
- sqrt(z.conjugate).conjugate
- else
- r = z.abs
- x = z.real
- Complex( sqrt!((r+x)/2), sqrt!((r-x)/2) )
- end
- end
- end
-
- # Redefined to handle a Complex argument.
- def exp(z)
- if Complex.generic?(z)
- exp!(z)
- else
- Complex(exp!(z.real) * cos!(z.image), exp!(z.real) * sin!(z.image))
- end
- end
-
- # Redefined to handle a Complex argument.
- def cos(z)
- if Complex.generic?(z)
- cos!(z)
- else
- Complex(cos!(z.real)*cosh!(z.image),
- -sin!(z.real)*sinh!(z.image))
- end
- end
-
- # Redefined to handle a Complex argument.
- def sin(z)
- if Complex.generic?(z)
- sin!(z)
- else
- Complex(sin!(z.real)*cosh!(z.image),
- cos!(z.real)*sinh!(z.image))
- end
- end
-
- # Redefined to handle a Complex argument.
- def tan(z)
- if Complex.generic?(z)
- tan!(z)
- else
- sin(z)/cos(z)
- end
- end
-
- def sinh(z)
- if Complex.generic?(z)
- sinh!(z)
- else
- Complex( sinh!(z.real)*cos!(z.image), cosh!(z.real)*sin!(z.image) )
- end
- end
-
- def cosh(z)
- if Complex.generic?(z)
- cosh!(z)
- else
- Complex( cosh!(z.real)*cos!(z.image), sinh!(z.real)*sin!(z.image) )
- end
- end
-
- def tanh(z)
- if Complex.generic?(z)
- tanh!(z)
- else
- sinh(z)/cosh(z)
- end
- end
-
- # Redefined to handle a Complex argument.
- def log(z)
- if Complex.generic?(z) and z >= 0
- log!(z)
- else
- r, theta = z.polar
- Complex(log!(r.abs), theta)
- end
- end
-
- # Redefined to handle a Complex argument.
- def log10(z)
- if Complex.generic?(z)
- log10!(z)
- else
- log(z)/log!(10)
- end
- end
-
- def acos(z)
- if Complex.generic?(z) and z >= -1 and z <= 1
- acos!(z)
- else
- -1.0.im * log( z + 1.0.im * sqrt(1.0-z*z) )
- end
- end
-
- def asin(z)
- if Complex.generic?(z) and z >= -1 and z <= 1
- asin!(z)
- else
- -1.0.im * log( 1.0.im * z + sqrt(1.0-z*z) )
- end
- end
-
- def atan(z)
- if Complex.generic?(z)
- atan!(z)
- else
- 1.0.im * log( (1.0.im+z) / (1.0.im-z) ) / 2.0
- end
- end
-
- def atan2(y,x)
- if Complex.generic?(y) and Complex.generic?(x)
- atan2!(y,x)
- else
- -1.0.im * log( (x+1.0.im*y) / sqrt(x*x+y*y) )
- end
- end
-
- def acosh(z)
- if Complex.generic?(z) and z >= 1
- acosh!(z)
- else
- log( z + sqrt(z*z-1.0) )
- end
- end
-
- def asinh(z)
- if Complex.generic?(z)
- asinh!(z)
- else
- log( z + sqrt(1.0+z*z) )
- end
- end
-
- def atanh(z)
- if Complex.generic?(z) and z >= -1 and z <= 1
- atanh!(z)
- else
- log( (1.0+z) / (1.0-z) ) / 2.0
- end
- end
-
- module_function :sqrt!
- module_function :sqrt
- module_function :exp!
- module_function :exp
- module_function :log!
- module_function :log
- module_function :log10!
- module_function :log10
- module_function :cosh!
- module_function :cosh
- module_function :cos!
- module_function :cos
- module_function :sinh!
- module_function :sinh
- module_function :sin!
- module_function :sin
- module_function :tan!
- module_function :tan
- module_function :tanh!
- module_function :tanh
- module_function :acos!
- module_function :acos
- module_function :asin!
- module_function :asin
- module_function :atan!
- module_function :atan
- module_function :atan2!
- module_function :atan2
- module_function :acosh!
- module_function :acosh
- module_function :asinh!
- module_function :asinh
- module_function :atanh!
- module_function :atanh
-
- end
-
- # Documentation comments:
- # - source: original (researched from pickaxe)
- # - a couple of fixme's
- # - RDoc output for Bignum etc. is a bit short, with nothing but an
- # (undocumented) alias. No big deal.
-